ert-logo

Machine Learning กับการเปลี่ยนแปลงอนาคตด้วย AI

Machine Learning

Machine Learning กับการเปลี่ยนแปลงอนาคตด้วย AI 

หากพูดถึงเทคโนโลยีที่มีการเติบโตอย่างรวดเร็วก็คงหนีไม่พ้นกับคำว่า Machine Learning (ML) ที่ได้รับความสนใจเป็นอย่างมากในปัจจุบัน ทั้งความโดดเด่นในด้านศักยภาพการทำงาน การเพิ่มประสบการณ์การทำงานที่ดีขึ้นและการตัดสินใจที่อ้างอิงจากข้อมูลฃ ถ้าคุณพร้อมแล้วมาเรียนรู้เกี่ยวกับ Machine Learning ไปด้วยกันได้เลย!! 

 

Machine Learning คืออะไร 

Machine Learning คือส่วนย่อยของ Artificial intelligence (AI) ที่ช่วยให้คอมพิวเตอร์สามารถเรียนรู้และปรับปรุงรูปแบบได้อัตโนมัติโดยอ้างอิงจากข้อมูล ซึ่งช่วยให้โมเดลจดจำ ระบุรูปแบบและปรับปรุงประสิทธิภาพโดยปราศจากการแทรกแซงของมนุษย์ 

ประเภทของ Machine Learning 

1. Supervised Learning 

  • การฝึกโดยใช้ข้อมูลที่มีป้ายกำกับ (Labeled Data) ซึ่งเครื่องคอมพิวเตอร์จะเรียนรู้ข้อมูลเหล่านั้นเพื่อการคาดการณ์ที่แม่นยำมากขึ้นเมื่อได้รับข้อมูลใหม่ เพื่อให้เห็นภาพชัดเจนยิ่งขึ้นลองนึกภาพที่เราฝึกสุนัขให้นั่ง นอน วิ่งโดยให้สัญญาณมือเป็นตัวบ่งบอกการกระทำว่าต้องทำอะไร เช่น นั่ง (สัญญาณมือคือชี้ลง) เมื่อฝึกไปหลายๆครั้งจนสุนัขเข้าใจได้ว่าเมื่อเราชี้นิ้วลงคือการสั่งให้มันนั่งนั่นเอง โดยตัวเครื่องคอมพิวเตอร์จะเรียนรู้ข้อมูลจากคู่ Input และ Output ในอดีตเพื่อเพิ่มความมั่นใจในการตัดสินใจที่ถูกต้องสำหรับการทำงานครั้งต่อไป 

2. Unsupervised Learning 

  • เป็นการฝึกที่ตรงกันข้ามกับ Supervised Learning หรือก็คือเป็นการจัดการกับข้อมูลที่ไม่มีป้ายกำกับ (Unlabeled Data) ตัวโมเดลจะระบุรูปแบบและความสัมพันธ์ที่เรียกว่า Correlation โดยไม่ต้องกำหนดผลลัพธ์ล่วงหน้า เช่นการจัดกลุ่ม (Clustering) เป็นตัวอย่างที่พบบ่อยใน Unsupervised Learning สมมติว่าเรามีชุดข้อมูลเกี่ยวกับประวัติการซื้อสินค้าของลูกค้าจากร้านค้าออนไลน์ แต่ละข้อมูลจะแทนลูกค้าและสินค้าที่พวกเขาได้ซื้อ เมื่อเราใช้ Unsupervised Learning อัลกอริทึมจะทำการจัดกลุ่มลูกค้าที่คล้ายกันตามพฤติกรรมการซื้อของพวกเขา โดยไม่ระบุกลุ่มหรือป้ายชื่อที่กำหนดไว้ล่วงหน้า ซึ่งอัลกอริทึมจะวิเคราะห์รูปแบบและความคล้ายคลึงในประวัติการซื้อและจัดกลุ่มลูกค้าที่มีนิสัยการซื้อสินค้าคล้ายกันไว้ กลุ่มเหล่านี้สามารถช่วยให้ร้านค้าเข้าใจกลุ่มลูกค้า ปรับแนวทางการตลาด หรือแนะนำสินค้าตามความชื่นชอบของแต่ละกลุ่มได้ 

3. Reinforcement Learning 

  • การฝึกที่ช่วยให้เครื่องคอมพิวเตอร์สามารถเรียนรู้ในสภาพแวดล้อมที่เปลี่ยนแปลงไปเพื่อให้บรรลุเป้าหมายที่ตั้งไว้ โดยแนวคิด Reinforcement Learning มาจากวิธีที่มนุษย์และสัตว์สามารถเรียนรู้ได้ด้วยการมีปฎิสัมพันธ์กับสภาพแวดล้อมต่างๆรอบตัวและได้รับคำชมหรือรางวัลสำหรับการกระทำที่ถูกต้อง ยกตัวอย่างเช่น เราสอนสุนัขว่าควรจะเห่าตอนไหนบ้าง สุนัขก็จะเริ่มเรียนรู้ไปเรื่อยๆว่าควรเห่าตอนมีคนแปลกหน้าเข้าบ้านหรือมีสิ่งปกติเกิดขึ้นและเมื่อสุนัขทำสำเร็จเราก็จะให้รางวัลเป็นสิ่งตอบแทน ซึ่งสุนัขจะสามารถเข้าใจได้ว่าแบบนี้ดีหรือไม่ดีและเรียนรู้เพื่อให้สามารถปรับตัวไปเรื่อยๆได้ 

ความสำคัญของ Machine Learning 

1. Real-world Applications 

  • Machine Learning ถูกนำมาใช้งานในหลายสาขาไม่ว่าจะเป็นการเงิน สุขภาพ การตลาดและเทคโนโลยี โดย Machine Learning จะช่วยแนะนำปรับปรุงระบบ ตรวจสอบการฉ้อโกง การวินิจฉัยโรค รถยนต์ขับเคลื่อนอัตโนมัติ และอื่นๆอีกมากมาย 

2. Advancements in Various Industries 

  • อุตสาหกรรมอย่างการเงิน สุขภาพและการผลิตใช้ประโยชน์จาก Machine Learning เพื่อปรับปรุงกระบวนการการทำงาน ลดต้นทุนและเพิ่มประสิทธิภาพ 

3. Enhancing Decision Making 

  • Machine Learning ช่วยให้ธุรกิจต่างๆสามารถตัดสินใจได้โดยอ้างอิงจากข้อมูล ซึ่งช่วยให้ธุรกิจมีความได้เปรียบมากขึ้นในตลาดที่มีการแข่งขันสูง 

การทำงานของ Machine Learning 

1. Data Collection and Preparation 

  • ขั้นตอนแรกคือการเก็บข้อมูลที่เกี่ยวข้องจากแหล่งต่างๆ เช่น Databases, Sensors และ Online Repositories โดยที่คุณภาพและปริมาณของข้อมูลเป็นปัจจัยสำคัญที่มีอิทธิพลต่อความสำเร็จของ Machine Learning Model 

 

2. Data Preprocessing 

  • เมื่อได้ข้อมูลมาแล้วจำเป็นที่จะต้องได้รับการจัดการข้อมูลทั้งหมดให้เรียบร้อยก่อนนำไปใช้กับ Machine Learning Model การแปลงข้อมูลให้อยู่ในรูปแบบที่เหมาะสมสำหรับการวิเคราะห์จะช่วยให้มั่นใจได้ว่า Machine Learning Model จะได้รับข้อมูลที่ถูกต้องและสอดคล้องกัน 

3. Feature Extraction and Selection 

  • ในขั้นตอนนี้คุณสมบัติที่เกี่ยวข้องจะถูกแยกออกจากข้อมูลที่ถูกประมวลผลจากขั้นตอนก่อนหน้า โดยตัวคุณสมบัติคือลักษณะเฉพาะที่ Machine Learning Model จะใช้ในการคาดเดาหรือตัดสินใจ ซึ่งการเลือกคุณสมบัติจะช่วยลดขนาดของข้อมูลและทำให้โมเดลสามารถทำงานได้อย่างมีประสิทธิภาพมากขึ้น 

4. Model Selection 

  • อัลกอริทึมของ Machine Learning สามารถแบ่งได้หลายประเภท เช่น Supervised learning, Unsupervised learning, และ Reinforcement learning โดยจะขึ้นอยู่กับลักษณะของปัญหาและประเภทของข้อมูลที่มีดังนั้นการเลือกอัลกอริทึมที่ถูกต้องและเหมาะสมก็จะช่วยให้การทำงานเป็นไปได้อย่างรวดเร็ว 

5. Model Training 

  • เมื่อเลือกอัลกอริทึมของ Machine Learning เรียบร้อยแล้วกระบวนการการฝึกอบรมก็จะเริ่มขึ้น โดยระหว่างการฝึกอบรมตัวโมเดลจะได้รับข้อมูลที่ถูกประมวลผลมาเรียบร้อยแล้วและทำการเรียนรู้จากข้อมูลที่ได้รับ ซึ่งตัวอัลกอริทึมจะทำการปรับพารามิเตอร์ภายในตามข้อมูลที่ถูกใส่เข้ามาและแสดงผลลัพธ์มาในรูปแบบที่ต้องการ  

6. Model Evaluation 

  • หลังจากจบการฝึกอบรม โมเดลจะถูกประเมินประสิทธิภาพโดยใช้ชุดข้อมูลที่แตกต่างจากเดิมเรียกว่า Test set สิ่งนี้ช่วยประเมินโมเดลว่าสามารถคาดการณ์ข้อมูลใหม่ได้ดีหรือไม่หรือให้พูดง่ายๆก็คือข้อมูลที่ตัวโมเดลไม่เคยเห็นมาก่อนนั่นเอง 

7. Model Optimization 

  • หากประสิทธิภาพของโมเดลไม่เป็นที่น่าพอใจ เราสามารถปรับ Hyperparameters, Learning rate และ Architectures เพื่อป้องกันพฤติกรรมการเรียนรู้ของโมเดลที่ไม่พึงประสงค์ได้ 

8. Model Deployment 

  • เมื่อโมเดลผ่านการประเมินจาก Test set ก็จะสามารถนำมาใช้งานจริงได้ ตัวโมเดลสามารถรวมเข้ากับแอปพลิเคชัน ระบบ หรือบริการต่างๆได้ขึ้นอยู่กับการใช้งาน 

9. Model Monitoring and Maintenance 

  • Machine Learning Model ต้องได้รับการตรวจสอบอย่างต่อเนื่องเพื่อให้มั่นใจได้ว่าข้อมูลมีความถูกต้องเมื่อเวลาผ่านไป หากมีข้อมูลเข้ามาใหม่ตัวโมเดลจำเป็นจะต้องได้รับการฝึกอบรมใหม่หรืออัปเดตเพื่อรักษาประสิทธิภาพให้คงที่ 

______________________________________________________________________________ 

Ref: https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML 

 

💬 🙋‍♀สอบถามเพิ่มเติมสามารถติดต่อมาได้ที่   

📞 Tel: 02-718-1599   

Website: https://www.ert.co.th/ 

📱 Line: https://lin.ee/wtyQVtl 

 



Leave a Reply

Your email address will not be published. Required fields are marked *

The Enterprise Resources Training Co.,Ltd. 2922/135-136, 3rd Fl. Room 331-332, Charn Issara Tower II, New Petchburi Road, Bangkapi, Huaykwang, Bangkok 10320
PRIVACY & COOKIES

© 2024 · The Enterprise Resources Training Co.,Ltd

เราใช้คุกกี้เพื่อพัฒนาประสิทธิภาพ และประสบการณ์ที่ดีในการใช้เว็บไซต์ของคุณ คุณสามารถศึกษารายละเอียดได้ที่ นโยบายความเป็นส่วนตัว และสามารถจัดการความเป็นส่วนตัวเองได้ของคุณได้เองโดยคลิกที่ ตั้งค่า

Privacy Preferences

คุณสามารถเลือกการตั้งค่าคุกกี้โดยเปิด/ปิด คุกกี้ในแต่ละประเภทได้ตามความต้องการ ยกเว้น คุกกี้ที่จำเป็น

Allow All
Manage Consent Preferences
  • Always Active

Save